

B.U.G.S .
DYNAMIC CRYPTOGRAPHY ALGORITHM

DOCUMENTATION

Author: Sylvain Martinez
Version: 5.1
Last Updated: 28/11/06

BUGS Algorithm Documentation

Forewords
There has been no cryptanalysis done on the algorithm discussed in this document. The
author does not claim, nor guarantee, for it to be secure, strong, unbreakable, ground
breaking, etc.

It is an algorithm which has been created for fun, by a person interested in cryptography
and computer security over a period of about 10 years.

The reader should not require a high level of mathematics knowledge but some basic
cryptography knowledge is required to appreciate the document’s content.

The first chapter of this documentation will briefly introduce the concept of the BUGS
algorithm and its history. The second chapter will give an overview of the algorithm
while the third and last chapter will focus on the algorithm details.

BUGS Algorithm Documentation

CONTENTS

CHAPTER I – BUGS ALGORITHM INTRODUCTION .. 1

I.1 TERMINOLOGY ... 1
I.1 HISTORY... 2
I.2 ALGORITHM CONCEPT.. 3

I.2.1 Logical Concept... 3
I.2.2 Dynamical Concept ... 3

CHAPTER II – BUGS ALGORITHM OVERVIEW .. 4
II.1 KEY GENERATOR OVERVIEW.. 4

II.1.1 Pre-requisites ... 4
II. 1.2 Process .. 5

II.2 FILE ENCRYPTION OVERVIEW... 7
II.2.1 Process ... 7

CHAPTER III – BUGS ALGORITHM DETAILS.. 8
III.1 KEY GENERATOR DETAILS .. 9

III.1.1 Key Padding.. 9
III.1.2 Bits Concatenation.. 10
III.1.3 Initial Scrambling ... 10
III.1.4 Key Encryption.. 13
III.1.5 Final Scrambling... 18

III.2 FILE ENCRYPTION DETAILS ... 19
III.2.1 Initialisation .. 19
III.2.2 Seeding .. 21
III.2.3 Shuffling .. 22
III.2.4 Alternatives ... 25

BUGS Algorithm Documentation Chapter I - Introduction

Version 5.0. Page 1/28

Chapter I – BUGS Algorithm Introduction

I.1 Terminology
The following abbreviations and assumptions will be used in this document:

BUGS – Big and Useful Great Security . The meaning was “made up” in 1997 to match
the algorithm name as explained in I.1 History.

KD – Key Dependant – a value which is “Key Dependant” will be different each time a
different key is used.

PRN – Pseudo Random Number – In general, all references to Random Number in this
document should be taken as a reference to a Pseudo Random Number.

LO – Logical Operation – This can be also referenced as a XOR, AND, NOR, NAND, etc

LFSR - Linear Feedback Shift Register – Algorithm used to generate PRN with the least
repetition possible for its output numbers.

Integer Size is 32 bits – The use of a 32 bits hardware platform is assumed.

ISAAC – This is a fast cryptography random generator created by Bob Jenkins and used
in BUGS. The details of the ISAAC Algorithm will not be discussed in this document.

BUGS Algorithm Documentation Chapter I - Overview

Version 5.0. Page 2/28

I.1 History
This algorithm started as a personal project in a beautiful but somewhat boring summer
holiday of 1995. A first version of the algorithm was named after my student nickname,
BUGS, and completed in early 1996 while studying at a French computer school in Lyon
(DUT Informatique, Lyon1). A small contest to test its strength ended up being posted on
different cryptography forums. Pressure from the French cryptography laws at the time,
as well as the DST (French Domestic Secret Service), proved to be too much for my
University’s director who asked me to cancel the contest and stop developing the
algorithm.

If anything, this gave me the motivation boost I needed and I redesigned most of the
algorithm in 1997 as part of my BSc project in the UK.

In 1999, the algorithm attracted the attention to few people and companies thanks to its
portability and being open source. One person especially, spent a lot of times trying to
break the algorithm. That person, who I will just name “Simon”, introduced himself as a
bored teenager and over few months showed a very high level of understanding of the
algorithm itself, highlighting a number of weaknesses and translating most of the
algorithm in pure assembler for efficiency and test purposes. I was responding to each
weakness highlighted by the unusually technically talented and politically opinionated
teenager, by spending days and night working for an improved algorithm design. This
resulted in 10 intense months of work and the latest version of the algorithm (v4.x); as
well as the end of the communication with my “muse” who suddenly had personal
problems and could no longer spend time on my algorithm.
As much as I would like this “Simon” to be more than just a talented teenager, this is
more than unlikely and just an interesting anecdote.

This brief history summary should give you the following information on BUGS:
- It was created by a cryptography enthusiast with no real knowledge in that field except
from reading about it in different books (Scheiner’s, etc).
- It has evolved a lot since its creation taking users’ comments into consideration.
- It has never been through a cryptanalysis.
- It is an unproven cryptography algorithm and should be dealt with as such, with caution.

BUGS Algorithm Documentation Chapter I - Overview

Version 5.0. Page 3/28

I.2 Algorithm Concept
The algorithm is based on two main concepts, Logic and Dynamic, it is not based on
mathematics,

I.2.1 Logical Concept
The “logical” approach taken was similar to answer to the following question:

- What would I do to make a newspaper unreadable to someone without the right
knowledge?

The answer was:
- I would cut the newspaper into pieces, shuffle those pieces in a certain way,

substitute some letters in the process and eventually glue the pieces back together.
Resulting in a similar size newspaper but with no meanings unless one would
know how to reverse the initial process.

There is no mathematics involved and the first version of the algorithm was doing just
that, for a given message the characters where shuffled and substituted.

I.2.2 Dynamical Concept
The current BUGS algorithm is similar in some ways to its original version 10 years ago.
It is no longer dealing with characters directly but with bits and has a more complex
substitution/operation section.
The main difference lays with the fact the algorithm is as dynamic as possible, this means
almost all of its components will change depending of the password itself used to
generate a key or crypt a file. This is called “Key Dependency” (KD) and has been
pushed to the extreme in the new BUGS Algorithm with dynamically linked components
such as:

- The number of rounds
- The operation used on each bits
- The shift window
- The direction of each operation (Left or Right)
- The size of the key buffer when crypting a file
- The size of the block shuffle and working file block.

The algorithm behaviour changes to great extend when used with different passwords.
All default settings can also be changed by the user, which means the knowledge required
to decrypt/reproduce a key gets extended to the environment settings as well as the
password itself.

BUGS Algorithm Documentation Chapter II - Overview

Version 5.0. Page 4/28

CHAPTER II – BUGS Algorithm Overview

The algorithm is made of a number of modules and sub-modules.
This documentation will only focus on two of the main modules:

- The Key Generator module
- The File Encryption module

The “file decryption” module has been left out in purpose as it is nothing more than
running the “file encryption” module backwards.

II.1 Key Generator Overview

II.1.1 Pre-requisites
There are a number of pre-requisites to this module:
- Seed source

The Seed can be a password, a key, or the result of a random algorithm (ISAAC,
time/date based, or user customised).

- Keylength Output:
The minimum keylength that can be generated is 128bits. Larger keys will be a
multiple of 128. There is no upper limit to the size of key.

- Keylength Input:
The seed must be at least of size N/2 when generating a key of size N. In other
words, when generating a 128bits key and using a password, the user must enter a
password of at least 8 characters (8*8bits = 64bits).

BUGS Algorithm Documentation Chapter II - Overview

Version 5.0. Page 5/28

II. 1.2 Process

An overview of the key generation process is described in the following diagram:

Key 2 = Key 1

Key 1

Right
Keylength?

STOP
Key 3

Password OR Random Generation flag

Key 2 = Key 3

Right
Keylength?

STOP
Key 1

Key 2

Key 3

YES

NO

YES

NO

Key
Generator

Key
Generator

f.1.1 – Key Generator - Overview

BUGS Algorithm Documentation Chapter II - Overview

Version 5.0. Page 6/28

Below is a brief description of the different Key Generator steps

- STEP 1: Key Padding
If the initial seed used to generate the key is not equal to the size of the keylength
to be generated some Pseudo-Random numbers (KD) will be inserted at a position
with is KD.

- STEP 2: Bits Concatenation
The seeds bits will be stored into one long string of bits. An Integer array will be
used for this purpose and the size of each element will be dependant of the
hardware platform used: 64, 32 or 16 bits. (or even 128, 256, etc when available).

- STEP 3: Initial Scrambling
The different seed bits will be combined together to generate a Pseudo Random
Number (which is therefore KD). This PRN will then be added to the each seed
element. Each time the PRN is added is will change (KD).

- STEP 4: Key Encryption
The seeds will now be referenced as the key. Each of its bits will be treated
individually and will be subject to some Logical Operations (LO). This is called
“a round”. In each round the following happens:

o A bit swap or a LO
o The distance between 2 bits (Shift Window) is KD
o The nature of the operation (a swap or LO) is KD
o The number of round is KD
o The direction of the round is KD (left or right)

For each key generated the minimum number of rounds is two, this will ensure
that all bits have been swapped at least once AND have had a LO.
The number of rounds is also KD.

- STEP 5: Final Scrambling
A PRN is generated if no random seed is provided and will be added to each
element of the Key. Each time the PRN is added it is changed using a Linear
Feedback Shift Register (LFSR)

BUGS Algorithm Documentation Chapter II - Overview

Version 5.0. Page 7/28

II.2 File Encryption Overview

II.2.1 Process
Below is a brief description of the different File Encryption steps

- STEP 1: Initialisation

o The file is mapped into a virtual array and splited into blocks. The length
of the block is KD

o Several keys are generated from the password or keyfile
o Only one key will be generated with a random number, encrypted and

inserted into the encrypted file. The insertion position is KD.
o That random key will be used to generate a PRN

- STEP 2: Seeding
o A number of keys (KD) will be generated and stored into a Key Buffer

using a derivation of the initial key generated and the PRN previously
generated as the random seed.

o From that key buffer 2 keys will be selected (KD) and an AND will be
conducted. The result is an Encryption Key

o A block will be selected from the file virtual array (KD) and a XOR will
be conducted with the Encryption Key.

o A New key will be derivated from one of the 2 keys used in creating the
Encryption key and replace one of the 2 keys.

o The process start again at STEP 2 until all the blocks have been encrypted
(seeded).

- STEP 3: Shuffling

o The same virtual array used in STEP 1 will be use again.
o Two blocks will be selected (KD)
o One out of three possible LO will be conducted (KD) on those two blocks.

The result is an Encryption block.
o A third block will be selected (KD) as the block to be encrypted and a

XOR will be conducted with the Encryption Block.
o One of the two blocks used to generate the Encryption block will then be

selected to be the next block to be encrypted (KD).
o The process start again at STEP 3 until all the blocks, but the last two,

have been encrypted (shuffled).
o The last 2 blocks will be crypted using a XOR with 2 new keys generated.

Not shuffling the last 2 blocks is required for the decryption process.

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 8/28

Chapter III – Bugs Algorithm Details

This Chapter describes in details the different steps of the following two main modules:
- The Key Generator module
- The File Encryption module

The reader is expected to have read the previous chapter and have an overall
understanding of the BUGS algorithm. The details are mainly explained through
Diagrams.

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 9/28

III.1 Key Generator Details

III.1.1 Key Padding

User enter Password
H|E|L|L|O|W|O|R|L|D

72 | 69 | 76 | 76 | 79 | 87 | 79 | 82 | 76 | 68 | | | | | |

Nb of Char to
add = NB_ADD

Length = L Saving password
into Pass_clear[]

Nc + Nd = POS

POS> L ?
Nc = POS / 10
Nd = POS – (Na * 10)
i.e.: if POS = 25 then Nc = 2 and Nd = 5

IndexA = Pass_clear[Na] % L1
IndexB = Pass_clear[Nb] % L1

Na Nb Nc Nd

New Char = Pass_clear[Indexa] & Pass_clear[Indexb]

Stop

Yes

No

INSERT New Char in Pass_clear[POS]

Nb of Char
< NB_ADD ?

Na = Na + 1
Nb = Nb + 1
POS = POS +1

Stop

No

Yes

f.2.1 –Test Length()

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 10/28

III.1.2 Bits Concatenation

III.1.3 Initial Scrambling

See f.4.1 - Add() - Random Generation
and f.4.2 - Add() - Pass_code Generation

72 | 69 | 76 | 76 | 79 | 87 | 45 | 34 | 103 | 23 | 12 | 10 | 79 | 82 | 76 | 68

01001000

01000101

010…..

…

0100100001000101|010…….| …
If using 16 bits integer

Password in clear

Convertion in bits and concatanation

f.3.1 –Transcription()

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 11/28

0100100001000101 | 0100011011001101 | 0111110… | | | | |
If using a 128 bits KEY,
with 16 bits integer

XOR

XOR

0100100001000101

1

0100100001000100
0100011011001101

0100100001000100

0000111010001001

…

…

0110100010000001
Pseudo-Random
number PRN-i

f.4.1 - Add() - Random Generation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 12/28

0100100001000101 | 0100011011001101 | 011..| | | | |
If using a 128 bits KEY,
with 16 bits integer.
Pass_clear

Keep the last
4 bits

If using 16 bits integer

Circular shift of PRN-i using the SW
window
I.e.: if SWa = 0101 = 5
Then 5 bits will be shifted from the
left to the right.

0101100001101000 | 0001010010011000 | 11.. | | | | |

XOR

New string generated.
Pass_code

1

2 3 4
0100100001000101

0110100010000001

0000000000000101
 Shift window SWa

Pseudo-Random
number PRN-i

0001000000101101
 New PRN-i+1

0100100001000101

…

…

Using new PRN-i+1
Same process as

 and

f.4.2 - Add() - Pass_code Generation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 13/28

III.1.4 Key Encryption
The following diagram describe an overview of this process:

The following 4 diagrams describe the detailed process:
f.5.2 - Swap() – Init
f.5.3 - Swap() - Modulo Generation
f.5.4 - Swap() – Direction
f.5.5 - Swap() - Operation

f.5.2 - Swap() - Init

f.5.3 - Swap() - Modulo Generation

f.5.4 - Swap() - Direction

f.5.5 - Swap() - Operation

f.5.1 - Swap() - Overview

PHASE 1: Repeat until all bits have
been through either a SWAP or
OPERATION

PHASE 2:Repeat PHASE 1 until the
number of ROUND is finished
(default Round = 2)

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 14/28

Pass_code [3]

0101100001101000 | 0001010010011000 | 11.. | … | … | … | ..01 | 1101110101001011

% (Round +1)

Additional Rounds AR”

Round + AR

Modulo
= 0?

Yes

No

 Pass_code

Modulo_Big = KEYLENGTH – 2
Modulo_Small = Modulo_Big / 2
i = 0

Operation
(either 0 or 1)

Direction
(either 0 or 1)

Modulo
(either 0 or 1)

New Dynamic round DRound. (max
value is 2x original nb of round)

modulo_swap=
modulo_small

modulo_swap =
modulo_big

Pass_code[1]

Pass_code[2]

Pass_code[0]

f.5.2 - Swap() - Init

 Initialisation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 15/28

0101100001101000 | 0001010010011000 | 11.. | … | … | … | ..01 | 1101110101001011

 Pass_code

modulo_session

Pass_code[i]

Pass_code[i]

Pass_code[i+1]

%
modulo_swap

%
modulo_session

Shift window SWb

i = i + 1
until
i=KEYLENGTH

 …

…

f.5.3 - Swap() - Modulo Generation f.5.4 –Swap()- Direction

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 16/28

0101100001101000 | … | … | … | … | … | …| 1101110101001011

 Pass_code

 SWb

 Bit A = pass_code[i] Bit B = pass_code[i+SWb+1]

0101100001101000 | … | … | … | … | … | …| 1101110101001011

 Pass_code

 SWb

 Bit A = pass_code[KEYLENGTH -1 - i] Bit B = pass_code[i2 - x - 1]

i2

LEFT Direction

RIGHT Direction

Yes

Direction

XOR

1

= 0 ?

No

f.5.4 - Swap() - Direction

f.5.5 - Swap() - Operation

f.5.3 –Swap()- Modulo Generation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 17/28

= 0 ?

Operation SWAP

Bit A Bit B

Bit B

Operation Choice = pass_code[i] %5

Bit A

CHANGING
 Bit A and B

to

Operation Choice = pass_code[i + 1] %5

Choice 0 = Bit A *XOR* Bit B

Choice 1 = 1 *XOR* (Bit A *OR* Bit B)

Choice 2 = Bit A *OR* Bit B

Choice 3 = Bit A *AND* Bit B

Choice 4 =1 *XOR* (Bit A *AND* Bit B)

New Bit A New Bit B

f.5.4 –Swap()- Direction

Operation = Operation *XOR* 1

Modulo_Swap = Modulo_Small
Modulo_Swap
 = Modulo_Big

?

Modulo_Swap = Modulo_Big

f.5.3 –Swap()- Modulo Generation

f.5.5 - Swap() - Operation

Yes

No

Yes

No

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 18/28

III.1.5 Final Scrambling

If no random number already provided in the function parameter, then:
Generate Random key either with the ISAAC algorithm or with the system
time.

0001000111100011 | … | … | … | … | … | …| 1001000101010110

 Pass_code

Random_key

% 16
If using 16 bits integer

Index_1

Pass_code[Index_1] =

XOR
Pass_code[Index_1] Random_key

LINEAR FEEDBACK SHIFT REGISTER (LFSR)
(With a different primitive polynom when using 64, 32 or 16 bits integer)

New Random_key

 Pass_code[i] =

i = 0

i <> Index_1
?

Pass_code[i]
XOR

New Random_key

i = i+ 1

Yes

No

f.6.1 - Code()

 Initialisation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 19/28

III.2 File Encryption Details

III.2.1 Initialisation
See f.7.1 – file_crypt() - Init and f.7.2.1 – file_crypt() –Seed() - Random Generation

Block 2 3 4 5 7
 1

 8 9 10 11 … …

 ...

Length = Block_shuffle
Red Square = Single Block_crypt

Hello World,
This is a test file in clear text which we are about to
crypt. First we are going to “split” that file into a
number of blocks.

Tab_Seed
and

Tab_Shuffle

Clear Text File

i = Pass_code[1]
Dynamic_shuffle = IV_Key[i] % 32 (if using 32 bits integer)
Block_shuffle = Dynamic_shuffle + Block_shuffle
Block_crypt = File length in bytes

Block_shuffle is define with the following rules:
a) It must be a multiple of 4 bytes (if using 32 bits integer)
b) Block_crypt / block_shuffle >= 6

Password OR Key File

Key Generator
Not using random

number
 (f.5.1 - Code())

IV_Key
Key_ Buffer = Key_Buffer + IV_Key[0]
(Max 2x original Key_buffer value)

f.7.1.1 – file_crypt() - Init

 Initialisation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 20/28

Pos_key = Pass_codeB[0] % block_crypt
Tab_seed[Pos_key] = 1 (not to be used again)

Code_key

Key Generator
With random

number

Key Generator
Not using random

number
 (f.5.1 - Code())

Pass_codeB XOR

Insert “encrypted” random key into file at
postion “Pos_Key”

Code_key[i]

1
XOR

RN XOR

New_RN

Code_key[0]

First RN

RN = First RN RN = New_RN

RN

Key_Buffer = 16 (Can be changed by user)
NB_index = KEYLENGTH / 32 (when using 32 bits integer)

f.7.2.1 – file_crypt() –Seed() - Random Generation

Yes

No

i = i +1
i > NB_Index ?

IV KEY

 Initialisation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 21/28

III.2.2 Seeding

Yes
f.7.3.1 – file_crypt() –

Shuffle() -
Initialisation

Key Generator
With RN as a random number.

Because of LSFR RN will
change each round

No

Yes Store Key_i into
Keybuffer_array.

RN
Pass_codeB

Key i

indexA = Pass_codeB[0]
indexB = Pass_codeB[1]
Pos = Pass_codeB[i]

Tab_Seed[Pos]
= 1 ? Pos = Pos + 1

Nb of Key
generated =

Key_buffer?

 Block at
 Position “Pos”

File to Seed

XOR

AND
Keybuffer_array[indexA] Keybuffer_array[indexB]

Crypted Block

Replace file clear text block with the
crypted block Tab_Seed[pos] = 1

Pass_codeB = Key i

RN

Key i
Replace Keybuffer_array[IndexA]

with Key_i

New IndexA and IndexB
must be different from

previous IndexA

Pass_codeB =
keybuffer_array[IndexB]

f.7.2.2 – file_crypt() – Seed() - Probability Seed

Pass_codeC

No

All file cleartext
blocks seeded?

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 22/28

III.2.3 Shuffling

See f.7.3.1 – file_crypt() – Shuffle() - Initialisation
And f.7.3.2 – file_crypt() – Shuffle() - Position & Operation
And f.7.3.3 – file_crypt() – Shuffle() –Last 2 blocks

index = IV_Key[0]
PosA = IV_Key [Index]
PosB = IV_Key [Index + 1]
Random_seed = IV_Key [Index + 2]
Pos_crypt = “last block” (this is because the last block may have a variable size)
Length_shuffle = Length_file / Block_shuffle (number of shuffle block in the file to crypt)

 Initialisation

f.7.3.1 – file_crypt() – Shuffle() - Initialisation

f.7.3.2 – file_crypt() – Shuffle() - Position & Operation

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 23/28

No

No

f.7.3.1 – file_crypt() – Shuffle() - Initialisation

No

Yes

Yes

No

Operation Choice = (PosA + PosB + Pos_crypt) % 3

Tab_shuffle[PosA] =
1 ?

XOR

Replace file block with the crypted block
Tab_Shuffle[Pos_crypt] = 1

f.7.3.2 – file_crypt() – Shuffle() - Position & Operation

Tab_shuffle[PosA] =
1 ?

PosA = PosA + 1

PosB = PosB + 1

 Block at
 Position “PosA”

Position Position
“PosB” “Pos_crypt”

Choice 2 = NOT (Block[PosA] AND Block[PosB])

Choice 0 = Block[PosA] OR Block[PosB]

Choice 1 = NOT (Block[PosA] OR Block[PosB])

Shuffled BLOCKS

File to Shuffle

Crypted BLOCK

Yes All block file
shuffled?

Yes

Pos_crypt = PosA

Pos_crypt = PosB
RN = LFSR(Random Seed)
PosA = RN % Length_Shuffle

RN = LFSR(Random Seed)
PosB = RN % Length_Shuffle

Pos_crypt is an
Odd number?

f.7.3.3 – file_crypt() –
Shuffle() –Last 2 blocks

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 24/28

Key 1

Last 2 block files:
Block_Last1 and Block_Last2
They cannot be shuffled. Instead, they are
each encrypted as follow.

IV Key

XOR Block_Last1

Key 2 XOR Block_Last2

STOP

f.7.3.2 – file_crypt() – Shuffle() - Position & Operation

f.7.3.3 – file_crypt() – Shuffle() –Last 2 blocks

Key Generator
Not using random

number
 (f.5.1 - Code())

Key Generator
Not using random

number
 (f.5.1 - Code())

BUGS Algorithm Documentation Chapter III - Details

Version 5.0. Page 25/28

III.2.4 Alternatives
All the KD highlighted in the above steps can be changed to static values, enable or
disable. The same is true for the size of the “block_crypt” as shown in f.7.4 – Alternative
Block Crypt size. This means that all the above steps can either be conducted across the
entire file or within smaller “working blocks”.

Block 2 3 1 2 3
 1

 1 2 3 1 … …

 ...

Red Squares = Multiple block_crypt

f.7.4 – Alternative Block Crypt size

